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Hugo Steinhaus

• Polish Mathematician, 1887-1972

• Game theory, functional analysis, topology, …

• He „found” Stefan Banach (his greateast mathematical „discovery”)

• Steinhaus’s Principle:

„A Mathematician Will Do It Better!”



Hugo Steinhaus

• Polish Mathematician, 1887-1972

• Game theory, functional analysis, topology, …

• He „found” Stefan Banach (his greateast mathematical „discovery”)

• Steinhaus’s Principle:

„A Mathematician Will Do It Better!”



Hugo Steinhaus

• Polish Mathematician, 1887-1972

• Game theory, functional analysis, topology, …

• He „found” Stefan Banach (his greateast mathematical „discovery”)

• Steinhaus’s Principle:

„A Mathematician Will Do It Better!”



Hugo Steinhaus

• Polish Mathematician, 1887-1972

• Game theory, functional analysis, topology, …

• He „found” Stefan Banach (his greateast mathematical „discovery”)

• Steinhaus’s Principle:

„A Mathematician Will Do It Better!”



Hugo Steinhaus

• Polish Mathematician, 1887-1972

• Game theory, functional analysis, topology, …

• He „found” Stefan Banach (his greateast mathematical „discovery”)

• Steinhaus’s Principle:

„A Mathematician Will Do It Better!”



Hugo Steinhaus

• Polish Mathematician, 1887-1972

• Game theory, functional analysis, topology, …

• He „found” Stefan Banach (his greateast mathematical „discovery”)

• Steinhaus’s Principle:

„A Mathematician Will Do It Better!”



Is it cake?



Is it origami?
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• Convert himself from Phicics to Origami

• One of the foremost origami artists and theorists in the world
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Folding paper can double the cube!



Some Mathematics

• Alperin and Lang proved that the set of some 7 axioms (Hizita-Hatori) of „folding paper” are complete (we can create from 
tchem any arragment of points and lines in origami paterns)

•  - the set of all numbers that we can create from origami (this set is described by Auckly and Cleveland)

• Theorem: First 6 axioms are able to find (constructively) 

solutions to a 3rd-degree polynomial equation with 

coefficients from .
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Flat origami

• Thm (Maekawa). Let U/ D be the number of up/ down creases of a 
flat origami. Then |U-D|=2.

• Thm. The numer of all creases in a vertice is even.

• Thm (Kawasaki). For any flat origami, the sum of every second angle
at any vertex is equal to 𝝅.

• NP.-hard problem

(Bern, Hayes, 1996)
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Miura’s fold

• Japanese astrophysicist Koryo Miura in 1970 discovered a fold pattern that allows surfaces made of rigid materials to be 
folded, and also unfolds very easily

• He wanted to find a way to deploy large solar panels in space.

• How many ways can we fold this pattern? Open problem

• There is a bijection with 3-colored special graphs
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What for?

• Starshade

• Jet Propulsion Lab

• Would block the light of the star, allowing the telescope to capture an image of the planets around the star. 



What for?

• James Webb Space Telescope 

– its sunshield was folded compactly 

and expanded in space



What for?

• Eyeglass – a telescope that has 100 m in diameter origami lens



Medicine

• Zhong You et al., using an origami technique water bomd, created a stent,

a tube made of mesh.

A stent is used to widen narrow or weakened blood vessels.



Origami robot?

• MIT Scientists creates an origami robot 
which folds enough to fit into a pill. Once
inside the body, it is designed to unfold
on its own and move around internal
organs using external magnets.



What for?

• Bulletproof screens

• Airbags

•…



Geometries

• Euclidean, Non-Euclidean, Affine, Projective, Convex, Algebraic, Discrete, Differential, Contact, Symplectic, Information, Fractal, 
…



Fractals

• A geometric shape that has ‚the self-similarity’ property



Sierpinski triangle







cube



Menger’s cube



Fractals in nature





Derby, australia





What for?

• Terrain (and other
structures) generators





What for?

• Antenas (to work properly) should have some
symmetries and some selfsimilarity properties
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Example

• Let’s consider the axiom „F--F--F” and the rule: „F:F+F--F+F”, and the angle of 60 degrees.
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Airhourse











Metric on Compact Subspaces of a metric space

• Hausforff metric (cat-dog metric)

• First: we introduce a dog in A and a cat in B sets, respectively.
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Metric on Compact Subspaces of a metric space

• Hausforff metric (cat-dog metric)

• Now, we switch them. Also, we write down the equilibrum distance in this case. 

• Then, the Hausdorff distance is the smallest of these two numbers.



Contraction

• Let (𝑋, 𝑑) be a metric space. Then, a function 𝑓: 𝑋 → 𝑋 is a contraction when there exist a constant

𝐶 < 1 for which 𝑑 𝑓 𝑥 , 𝑓 𝑦 < 𝐶𝑑(𝑥, 𝑦).



Banach Fixed-point theorem

• If (𝑋, 𝑑) is a complete metric space, and 𝑓: 𝑋 → 𝑋 is a contraction, then there exists the unique point 𝑝 such
that 𝑓 𝑝 = 𝑝.

Furthermore, 𝑝 = lim
𝑛
𝑓𝑛(𝑥) .







Theorem

• If (𝑋, 𝑑) is complete metric space, then the space of all compact subsets, with Hausdorff metric, is also complete.

• So we can apply Banach fixed-point theorem, if we can find some contractions. 



Many contractions (Hutchinson operator)

• Let 𝑓𝑖 be contractions on 𝑋, 𝑑 . Let 𝑆 be compact subset of 𝑋. Let

𝐻 𝑆 =ራ

𝑖=1

𝑛

𝑓𝑖 𝑆 .

Then, 𝐻 is a Hutchinson operator, and it is a contraction.









• Therefore, fractals (some of them) can be viewed as fixed points of some contraction in some strange metric space.



Barnsley fern



Mandelbrot set

• This is a set of such 𝑝 ∈ ℂ that the sequence
𝑧0 = 0

𝑧𝑛+1 = 𝑧𝑛
2 + 𝑝

does not diverge to ∞.



IFS – Iterated function system

• CHAOS GAME – pick a random point and iterate it randomly using
one of basic contractions.

• Very fast => FRACTAL COMPRESSION!

• THE INVERSE PROBLEM (Given a picture, find IFS system that creates
it). 

• Some partially results are given by Arnaud Jacquin and since 1995, 
ALL fractal compression software is based on his method.

• Still an open problem.



IFS – Iterated function system

• CHAOS GAME – pick a random point and iterate it randomly using
one of basic contractions.

• Very fast => FRACTAL COMPRESSION!

• THE INVERSE PROBLEM (Given a picture, find IFS system that creates
it). 

• Some partially results are given by Arnaud Jacquin and since 1995, 
ALL fractal compression software is based on his method.

• Still an open problem.



IFS – Iterated function system

• CHAOS GAME – pick a random point and iterate it randomly using
one of basic contractions.

• Very fast => FRACTAL COMPRESSION!

• THE INVERSE PROBLEM (Given a picture, find IFS system that creates
it). 

• Some partially results are given by Arnaud Jacquin and since 1995, 
ALL fractal compression software is based on his method.

• Still an open problem.



IFS – Iterated function system

• CHAOS GAME – pick a random point and iterate it randomly using
one of basic contractions.

• Very fast => FRACTAL COMPRESSION!

• THE INVERSE PROBLEM (Given a picture, find IFS system that creates
it). 

• Some partially results are given by Arnaud Jacquin and since 1995, 
ALL fractal compression software is based on his method.

• Still an open problem.



IFS – Iterated function system

• CHAOS GAME – pick a random point and iterate it randomly using
one of basic contractions.

• Very fast => FRACTAL COMPRESSION!

• THE INVERSE PROBLEM (Given a picture, find IFS system that creates
it). 

• Some partially results are given by Arnaud Jacquin and since 1995, 
ALL fractal compression software is based on his method.

• Still an open problem.



IFS – Iterated function system

• CHAOS GAME – pick a random point and iterate it randomly using
one of basic contractions.

• Very fast => FRACTAL COMPRESSION!

• THE INVERSE PROBLEM (Given a picture, find IFS system that creates
it). 

• Some partially results are given by Arnaud Jacquin and since 1995, 
ALL fractal compression software is based on his method.

• Still an open problem.



IFS – Iterated function system

• CHAOS GAME – pick a random point and iterate it randomly using
one of basic contractions.

• Very fast => FRACTAL COMPRESSION!

• THE INVERSE PROBLEM (Given a picture, find IFS system that creates
it). 

• Some partially results are given by Arnaud Jacquin and since 1995, 
ALL fractal compression software is based on his method.

• Still an open problem.



Differential geometry

• Aim: study invariants of curves, surfaces (and generalizations - manifolds) using methods involving „calculus”

• Using a definition of curvature we can examine how much a manifold deviates from being flat

• We can detect it even if we live inside such a manifold



Differential geometry
• General Relativity (Physics): Used to describe spacetime curvature and gravitational fields.

• Robotics: Used for motion planning, particularly in navigating curved spaces (manifolds) for robot movements.

• Computer Vision: Applied in image processing and shape recognition, where surfaces and curves are analyzed.

• Machine Learning: Used in manifold learning to explore data structures that lie on lower-dimensional surfaces.

• Economics: Employed in optimal transport theory and studying geometrical structures in decision spaces.

• Engineering: Applied in structural analysis and optimization, particularly in the study of mechanical stresses and strains.

• Biology: Used to understand the shapes of biological structures (e.g., proteins) and their transformations.

• Fluid Dynamics: Helps describe the geometry of flow and curvature in space for complex fluid behaviors.

• …



Information geometry

• Information geometry is an interdisciplinary field that applies the techniques of differential geometry to study probability 
theory and statistics. It studies statistical manifolds, which are Riemannian manifolds whose points correspond to probability 
distributions.

• Statistical inference

• Time series

• Quantum systems

• Neural networks and machine learning

• …



GPT4o:



Algebraic geometry
• Varieties: Study of solutions to systems of polynomial equations, called 

algebraic varieties.

• Singularities: Analyzing points where varieties fail to be smooth, and 
methods to resolve these singularities.

• Arithmetic Geometry: Combining algebraic geometry with number theory to 
study solutions of polynomial equations over different fields (like integers).



Algebraic geometry

• Cryptography: Used in elliptic curve cryptography, where algebraic curves provide secure methods for encrypting data.

• Coding Theory: Applied in constructing error-correcting codes using algebraic curves, improving data transmission accuracy.

• Robotics: Useful in solving polynomial equations related to robot kinematics and motion planning.

• Machine Learning: Applied in the study of data manifolds and in defining features using algebraic invariants.

• Biology (Phylogenetics): Used to model evolutionary trees through algebraic varieties representing genetic relationships.

• Chemistry (Crystallography): Helps in understanding molecular structures and symmetries through the study of algebraic 
varieties.

• ….



Elliptic curve cryptography

• Curves of the form 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.

• Forms an „abelian group”

• Symmetric about the x-axis.

• Point at Infinity acting as the identity element.



How to add?

• P and Q added to obtain P+Q which is a reflection of R along the x-axis



How to add?

• If we want add P+P we start from drawing a tangent line at P.



Discrete log problem

• If Q=kP and we are given Q and P, it is hard to find k.

• Methods to solve include brute force and some other ways, but up to this moment, they are computationally expensive or
unfeasible

• Exponential running time



GPT4o:





ART, Sebastien preschoux

• https://www.sebastienpreschoux.com/#/paintings/

https://www.sebastienpreschoux.com/#/paintings/










More on String art







String art generator



My own small contribution

• I. Danielewska, D. Polawski, D. Sterczewska, M. Zwierzynski: "Arthistic Aspects of the Wigner Caustic and the Centre 
Symmetry Set", arXiv:2409.04443, sent to Journal of Mathematics and the Arts (hope they will like it)
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